Weaning from Mechanical Ventilation

Scott K. Epstein, MD
Dean for Educational Affairs
Professor of Medicine
Tufts University School of Medicine

Disclosure

• Receive royalties as author for a number of chapters on weaning in UpToDate
Weaning Classification

- **Simple Weaning (70%)**
 - 1st SBT successful, extubation successful

- **Difficult Weaning**
 - Fails 1st SBT (needs up to 3 SBTs)
 - 7 days from 1st SBT to successful weaning

- **Prolonged Weaning**
 - Fail at least 3 SBTs or
 - > 7 Days

- **Difficult + Prolonged = 30%**
 - ↑ mortality compared to Simple

Brochard, ERJ 2004
Weaning Classification

- **Simple Weaning (30-67%)**
 - 13% (0-11%)

- **Difficult Weaning (20-40%)**
 - 11% (13-21%)

- **Prolonged Weaning (6-30%)**
 - 13-32% (32-39%)

- **Difficult + Prolonged = 30-70%

Mortality: Funk, ERJ 2009, Sellares ICM 2011
Tonneller Resp Care 2011, Penuelas, AJRCCM 2011,
Extub Failure: Jeong PLoS One 2015; Thille CCM 2015

Criteria that suggest readiness for SBT/Weaning

- **Subjective Measurements**
 - Some resolution of acute disease process
 - Clinician believes weaning is possible

- **Objective Measurements**
 - Adequate oxygenation (PaO₂ ≥ 60 on FiO₂ ≤ 0.40,
 P/F ≥ 150; PEEP ≤ 5)
 - Stable cardiovascular system (no or minimal pressors)
 - Adequate mental status (GCS ≥ 11-13)
 - Afebrile (T < 38-38.5)
 - Adequate Hgb (≥ 8-10)
 - Favorable “parameters” (e.g. f < 35, Vₜ > 5ml/kg, NIF < -30)

30 % never satisfying criteria still liberated
Ely Intensive Care Med 1999
How do predictors perform?

- Systematic review of all studies
- Meta-analysis
- ~ 50 weaning predictors
- Only 5 of possible value in predicting
 - LR+ < 4 (small inc in prob of success)
 - LR ~ 0.1-0.3 (small-mod inc of failure)

RCT of Weaning Predictor: f/VT, RSBI

To pass the daily screen five criteria to be satisfied:
1. P/F ratio of ≥ 150; or SpO2 > 90% at FiO2 ≤ 0.4
2. PEEP ≤ 5 cm H2O
3. MAP of ≥ 60 mm Hg without vasopressor agents
4. awake or easily arousable
5. adeq cough during suctioning, does not require suctioning more often than every 2hrs

Tanios et al, Crit Care Med 2006
What mode for SBT?

484 pts MV >48h

N = 246 T-tube

N = 192 Passed, 78%

Reintubation
36 (18.7%)
38 (18.5%)

N = 238 PSV 7

N = 205 Passed, 86%

Esteban et al, AJRCCM 1997

Imposed WOB: It’s Real

• 10 trached patients
• PTP_{di}, TTI_{di}, f/Vt measured with 8 mm v 6.5 mm internal diameter
• Narrower tube: ↑PTP, TTI, f/Vt
• In vitro study of endotracheal tubes
 – Similarly ↑ resistance with narrower tube

Valentini et al. Respir Care 2012
Imposed WOB: PSV v T-tube

- 31 patients failing 30-min T-tube
- Immediately placed on PSV 7 cmH2O for 30 minutes
- 10 failed
- 21 succeeded – extubated
 - 17 success
 - 4 failed

Automatic Tube Compensation

- Adjusts PSV based on tube characteristics and throughout cycle
- Trend for SBT success, ATC (96%) v CPAP (85%), (Cohen Crit Care Med, 2006)
- No diff ATC v PSV (Cohen, Crit Care 2009)
SBT Duration

- **Zeggwagh** *ICM 1999*, 40% EF with SBT 2 min
- **Esteban** *AJRCCM 1999*
 - 30 v 120 min T-piece, No DIFF in WF or EF
- **Perren**, *Intensive Care Med 2002*
 - 30 v 120 min, PSV 7 cmH20, No Diff in WF or EF
- **BUT**
 - **Vitacca** (*AJRCCM 2001*): 75 COPD pts, MV for > 15 days
 - Median to time to trial failure = 120 minutes
 - **Teixeira** (*CCM 2010*): 73 pts failed > 1 SBT
 - Extubated after successful 30 min SBT: 43% EF

Criteria: Not Tolerating SBT

- **Objective**
 - PaO2/FiO2 < 150
 - ↑ PaCO2 > 10 or ↓ pH > 0.10
 - Resp rate > 35
 - HR > 140 or ↑ >20%
 - Syst BP < 90 or > 160 or Δ >20%

- **Subjective**
 - Signs of ↑ WOB (TA paradox or acc muscle use)
 - Other signs of distress (diaphoresis, agitation)

MDs & nurses underestimate breathlessness during **SBT** (*Haugdahl, AJRCCM 2015*)
Heart Rate Variability (HRV)

- Organ function variability – “natural mechanism reflecting adaptability of system” “response to stress”
- ↓ HRV may reflect ↑ catechols (sympathetic stimulation)
- 101 pts, 24 failed SBT, 13 reintubated
- Reduced HRV assoc with SBT failure
- ↑ HRV post extubation identifies ES

Huang et al Crit Care 2014

HRV & Resp Rate Variability (RRV)

- Multicenter prospective observational study of 721 pts, heterogeneous causes for MV
- Altered HRV & RRV, during SBT, associated with extubation failure
- Improved accuracy when combined with RBSI
- Of concern: 40% excluded because of protocol or technical violations or poor data quality

Seely et al Crit Care 2014
Patient Ventilator Asynchrony

• ↑ asynchrony (AI>10%) → ↑ duration of MV

• Patient-ventilator asynchrony during SBT
 – 6/15 (40%) during SBTs had trigger asynchrony
 (more likely to fail) (Tanios, AJRCCM 2002)

• Newer modes ↓ asynchrony (PAV or NAVA)

• Strategies to ↓ asynchrony have not clearly ↑
 weaning success

What questions should we ask when a patient fails?

✓ Can we identify the cause?
✓ Are the responsible factors reversible?
Transition to spontaneous breathing can be associated with an increased PAOP.

Lemaire et al, Anesthesiology 1988
May occur in 20-40%

Teboul, Intensive Care Med 2014;40:1069
Detecting Weaning Induced Cardiac Dysfunction

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Cardiac Dysfunction Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA catheter</td>
<td>Did PAOP increase ≥10 mmHg?</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Did E/A and E/Ea ratios increase?</td>
</tr>
<tr>
<td>Blood sample</td>
<td>Did BNP increase ≥48 ng/l or ≥12%?</td>
</tr>
<tr>
<td>Blood sample</td>
<td>Did plasma protein and Hb concentrations increase ≥5-6%?</td>
</tr>
<tr>
<td>TP thermodilution</td>
<td>Did extravascular lung water increase ≥14%?</td>
</tr>
</tbody>
</table>

Hemoconcentration/EVLW: Dres CCM 2014

From, Dres, Curr Op Crit Care 2014

Non-invasive Detection of Weaning Induced Cardiac Dysfunction

- Non-invasive CO at SBT start/end
- 85 pts, 34% failed SBT

Tanios et al, Am J Crit Care, 2016;25:257
Passive Leg Raising during SBT

Dres et al, Intensive Care Med 2015; 41:487

What SBT mode if cardiac dysfunction?

- 14 pts failed T-piece, PA catheter
- Pt effort (WOB and PEEPi) during SBT
 - T-piece > PSV+ZEEP > PSV+PEEP

Thille AJRCCM 2013, Cabello et al. Intensive Care Med 2010
Treating cardiac dysfunction

- **Nitrates** *(Routsi Crit Care 2010)*
 - 12 COPD, failed >3 SBT: ↑SBP, RPP, PA, PAOP
 - NTG: no physiol Δ, 11/12 extubated

- **BNP driven fluid management protocol** *(Mekontso-Dessap AJRCCM 2012;186:1256)*
 - Intervention grp more fluid restriction and diuretics
 - More neg fluid balance during weaning
 - Shorter time to successful weaning and extubation

- **ACE inhibitor for HFrEF**
- **Ca channel blocker for HFpEF**

What Mode for Weaning?

- **Ladeira et al, Cochrane Database Syst Rev 2014**
- Nine RCTs, 1208 patients
- No clear evidence of difference when comparing PSV to T-tube
- Get rid of SIMV
- But heterogeneity of patients may hide benefits in certain groups
A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation

- Closed-loop system, interprets clinical data in real-time (N=144 patients)
- Continuously adjusts level of vent assistance
 - Adapts level of PS to keep pt in “comfort zone”
 - Resp rate, Tidal volume, PetCO2 below maximal threshold
 - When minimal PSV achieved: SBT
- CDW associated with:
 - ↓ Duration of weaning, duration of MV, ICU LOS
 - NO diff in complications

Automated Weaning

- **Australian study**, N=102, (Rose, ICM 2008)
 - Automated: No diff in dur weaning or MV
 - Why?: younger pts, Less ill, No COPD, 1:1 nurse:patient 24-h in house intensivist
- **Surgery pts**, N=300 (Schadler AJRCCM 2012)
 - Automated v written protocol, No difference
 - Cardiac surg pts, ↓ MV duration, earlier SBT
- **Automated v protocol**, N=92, (Burns AJRCCM 2013)
 - ↓ time to successful SBT, extubation (3 v 4d)
- **Meta-analysis, Automated**: ↓ duration of weaning, MV, LOS in mixed/medical ICU (Rose, Crit Care 2015)
NIV in Weaning, Meta-analysis

Pooled Data
16 RCTs, N=994, ~80% COPD
Mortality, RR 0.53
Weaning Failure, RR 0.63
VAP, RR 0.25
Duration of intubation, -5.6 d
Hosp LOS, -5.6 d
ICU LOS, -6.0 d
Reintubation, RR 0.65
Tracheostomy, RR 0.19
No effect on duration of weaning

Burns et al, Can Med Assoc J, 2014

VENISE Trial

- RCT, 208 patients, 13 French ICUs
- Inclusion: MV > 48 hrs, acute/chronic resp failure* (hypercapnia), failed SBT 5-120 minutes
- Three arms: Invasive weaning, NIV, Oxygen
- No diff: reintub, LOS, survival, complications
- Rescue NIV: 50% (successful in 50%)
- ~1/3 of pts randomized to O₂ did well w/o NIV

Girault et al, AJRCCM 2011:184:672
NIV Weaning - Conclusions

- Some Patients with Acute on Chronic RF (COPD) - *only in very select patients*
- SBT Readiness Criteria Satisfied
- Satisfies extubation criteria
 - CNS, cough, secretions (suction freq)
- Caveats (Good candidate for NIV)
 - Adequate interface; not a difficult reintubation
 - Able to breathe spontaneously for ~5-10 min

Daily Screen

- P/F ≥ 200 & PEEP ≤ 5;
- Cough; No IV sedation;
- Hemodynamically Stable
- f/V̅T ≤ 105

300 patients

- **Fail**
 - Intervention
 - **Pass**
 - 2 hr SBT
 - T piece CPAP-FB
 - Prompt MD

Ely et al, NEJM 1996
Protocols: Meta-analysis

- N=17 studies
- N= 2434 patients
- Weaning protocols:
 - Duration of Mech Vent ↓ by 26%
 - Duration of Weaning ↓ by 70%
 - ICU LOS ↓ by 11%
- Reductions were most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs *(exception Navalesi CCM 2008)*

Blackwood et al, Cochrane 2014

Strategies: ↓ duration MV

- Nursing/Resp Therapy
 - Thorens et al, CCM 1995 *(Better nursing ratio)*
 - Henneman et al, CCM 2001 *(Bedside communication sheet, flow sheet)*
- Sedation protocols (RCTs)
 - Brook et al, Crit Care Med 1999 *(algorithm)*
 - Kress et al, N Engl J Med 2000 *(daily cessation or DIS)*
 - Girard et al, Lancet (ABC) 2008 *(SAT + SBT)*
 - ↑ vent-free days, ↓ time in coma, ↓ ICU, hosp LOS, ↑ One year survival
 - de Wit et al Crit Care 2008 *(protocol vs DIS)*
 - Mehta et al, JAMA 2013 *(protocol vs protocol+DIS)*
- Early Physical Therapy
 - Schweikert, Lancet 2009 *(1-2d post MV)*
What are the consequences of delaying extubation?

- Prosp study 136 brain injured patients
- Criteria used to determine readiness for extubation (q day)
- Extubation delay: # of days between readiness day and extubation (less 48h)
- 27% experienced extubation delay

Coplin et al. AJRCCM 2000

Extubation Failure

N~35,000 (60 studies)
Outcome of Extubation Failure

Outcome of Extubation Failure (EF) - Frutos-Vivar et al, J Crit Care 2011

- 1152 extubated pts, 29% met EF criteria (16% reintubated)
- EF: older, higher severity of illness, pneumonia
- EF & reintubation independently assoc with mortality
- ↑ ICU mortality: complications after reintubation
 - Organ failure: CV (27%), renal (12%), hepatic (8%), hematologic (7%)
 - Complications (most in 1st 72 h): VAP (31%), sepsis (21%), acute resp distress (12%)

Thille et al, Curr Opin Crit Care 2013
Direct and Specific Effect of Extubation Failure

Procedural Complications of Reintubation

- Registry of >1000 pts, looked at 151 with repeated intubation
- Last intubations associated with more complications (13%)
 - New sustained hypotension (41%)
 - Hypoxia (35%)
- ↑ risk with ↑ time (>72h) between extub & reintub
- Given no ↑measurable marker of technical difficulty – patient physiologic factors rather than airway anatomic factors

*Thille A et al, Crit Care Med 2011

Elmer et, Crit Care 2015
Who’s at risk for EF?

- Increased age (>65 yrs)
- Pneumonia
- Chronic Resp/Cardiac disease
- Diaphragm dysfunction
- + fluid balance within 24 hrs
- Severity of illness at time of extubation
- Weak cough
- Increased secretions
- ↑ PaCO2 during SBT or immediately after extubation
- Post-extubation dysphagia

Can we accurately predict extubation outcome?

- Traditional predictors
- Modification of traditional predictors
- What does the patient think (Perren ICM 2010)
- Ability to protect the airway
 - Strength of cough (qualitative, quantitative)
 - Volume of secretions (qualitative, quantitative)
- Patency of upper airway (cuff leak test)
- Mental status (sedation, GCS, delirium)
- Integrated
Upper Airway Obstruction

- Majority MV for >24h → laryngeal lesions (Tadie, ICM 2010:36:991)
 - Laryngeal edema occurs in 5-15%
 - Post-extubation stridor 6-37%
 - UAO is cause of EF in 7-20%
- At risk: women, ETT too large for trachea, difficult intubation, prolonged intubation, UA trauma
- Pre-extub syst steroids ↓ stridor & ↓ reintubation*
- Cuff leak test (CLV <110-130 ml OR <10-24%)

CLV = 600 - 550 = 50

Positive Cuff Leak Test

Two meta-analyses*: Reintubation
LR+ (4-6), LR- (0.5)

*Ochoa ICM 2009, Zhou JEBM 2011

CLV = 600 - 600 = 0

False Positive Cuff Leak Test

Secretions
Upper Airway Obstruction

- Measure cuff leak test but only in high risk patients
- If positive (suggesting UAO)
 - Delay extubation 12-24 hrs
 - Methylprednisolone 20-40mg every 4-6 hrs for 12-24 hours
- Alternatives: extubate over an airway exchange catheter or have difficult airway cart at bedside

Prinianakis, Crit Care 2005
Assessment of cough

0 = no cough on command
1 = audible movement of air thru ETT but no audible cough
2 = weak (barely) audible cough
3 = clearly audible cough
4 = stronger cough
5 = multiple sequential strong coughs

Duan et al, AJCC 2015;24:e86

Putting it all together to predict extubation outcome

Can’t complete 4 simple commands
PCF ≤ 60 L/min
Secretions > 2.5 ml/h

Secretions: Suction > q2h

Salam et al, Intensive Care Med 2004
Mokhlesi Respir Care 2007
• N=225, MV >24hrs, 14% reintubation

1/3 reintubated considered at high risk by care givers
• *indep risk factors in multivariate analysis (if all absent 5% risk for reintubation)

Thille et al, CCM 2015:43:613

NIV: Non-invasive ventilation

Demoule et al, Intensive Care Med (2016) 42:82
NIV in Extubation Failure

- **Case control**: COPD patients *(Hilbert ERJ 1998)* - Yes,
- **RCTS**
 - Overt ext. failure *(Keenan, JAMA 2002)* - No
 - Early signs of ext. failure *(Esteban, NEJM 2004)* – No
 - Preventive: unselected *(Su, Resp Care 2012)* - No
 - **Preventive: high risk for ext. failure** – Yes
 - Fail > 1 SBT, CHF, PaCO2 > 45, comorbidity, airway at risk *(Nava, CCM 2005)*
 - Age > 65, CHF, APACHE II > 12 *(Ferrer AJRCCM 2005)*
 - Hypercapnia at end of SBT *(Ferrer Lancet 2009)*
- **Meta-analysis**: 9 studies, NIV ↓ reintubation rate, ICU LOS, mortality *(Bajaj, Heart & Lung 2015)*

High Flow Nasal Cannula (HFNC)

- Improved oxygenation
- Clearing of anatomic dead space
- Improved mucociliary/secretion clearance
- ↑ EELV, ↓resp rate, ↓ Asynchrony
- ↓ WOB
- Improved comfort, ↓ complications

HFNC after Extubation

• RCT v Venturi (Maggiore Am J Resp Crit Care Med 2014)
 – v. air entrainment mask (N=105), P/F≥300
 – ↓ postextubation resp failure (7.5 v 34.6%)
 – ↓ need for NIV (3.8 v. 15.4%)
 – ↓ reintubation (3.8% v. 21.2%)

• RCT v NIV (Stephan JAMA 2015), noninferiority
 – Post extubation in 830 high risk cardiac surg pts
 – Failed SBT, or high risk for EF: No diff in reintubation

• RCT v SOT for 24h (Hernandez JAMA 2016)
 – ↓ reintubation (5% vs 12%) in 527 low risk patients

HFNC – Cautionary Note

– 175 patients intubated after HFNC
– 130 before 48h, 45 after 48h (late)
– Late group
 • Higher ICU mortality (67 v 39%)
 • Lower extubation success
 • ↓ Vent free days
 • More frequent complications
– HFNC may delay intubation

Kang et al, Intensive Care Med 2015;41:623
Mechanical Insufflation-Exsufflation (MIE)

- 75 patients ventilated for >48h (~10d)
- RCT: MIE v standard care (NIV allowed in both groups)
- MIE: One RX pre-extubation → 3 daily sessions
 - ↓ reintubation (17 v 48%)
 - ↓ retub (NIV failure) (6 v 33%)
 - ↓ LOS post-extubation (3 v 10d)

Goncalves, Crit Care 2012:16:R48

B-mode

![B-mode image](image1)

M-mode

![M-mode image](image2)

Goligher et al, Intensive Care Med 2015
Ultrasound - Diaphragm

- Study of 88 pts, M-mode (*Kim CCM 2011*)
 - Diaphragm dysfunction (vertical excursion <10 mm or paradox), present in 29% of patients (uni 20/ bi 4)
 - longer weaning time (17 v 4d)
- Study of 63 pts, 14 EF (*DiNino Thorax 2014*)
 - B-mode: measure diaphragm thickening (tdi) in zone of apposition during SBT (PS,T piece)
 - predict ES (Δtdi ≥ 30%): Sens 88%, Spec 71%, PPV 91%, NPV 63% (more accurate than RSBI)

Ultrasound – Lung Parenchyma

- Prospective study of 100 patients
 - 14 WF, 86 extubated (29 or 34% EF)
 - Among those passing SBT, lung derecruitment greater in those with EF
 - Derecruitment: UAO, pneumonia, CHF, secretion aspiration, ineffective cough, muscle weakness
 - LUS < 13, low risk for EF (LR_{neg} = 0.2)
 - LUS > 17, high risk for EF (LR_{pos} = 12)

Soumer et al, Crit Care Med 2012:40:2064
Prolonged MV > 14-21 d

- ~50% weaned, ~70% hosp surv, ~40% 1-yr surv, ~20 d/c home1,3
- 10-32% don’t need “weaning”2,6,7
- RCT: ↓ median weaning time, trach v. PSV7
- RCT: deflating cuff ↓ wean time v. inflated8
- WS: ↑ Pimax, ↑ Pdimax, ↓ Pdi/Pdimax, ↓ TTI4
- Inspray train: ↓ wean time9,10
- WF: Anxiety, Depression, PTSD5

1. Scheinborn, Chest 2007
2. Vitacca, AJRCCM 2001
4. Carlucci, J Crit Care 2009
5. Jubran, ICM 2010
7. Jubran, JAMA 2013
8. Hernandez, ICM 2013
9. Martin, Crit Care 2011

Assess Readiness

RT-RN Driven Protocol

30-120 min SBT

Airway Cough Secretions Mental status

Extubate, NIV/HFNC

Progressive Withdrawal / NIV

Rest

Identify and Treat Reversible Causes of Failure

Full Ventilatory Support

Not Ready

Assess

Fail

Weaning Predictors Unnecessary

Not Ready

Assess

Fail